297

Small RNAs – The Big Players in Developing Salt-Resistant Plants

including drought, cold, and heat. Frontiers in Plant Science, 5, 170. https://doi.org/

10.3389/fpls.2014.00170.

Napoli, C., Lemieux, C., & Jorgensen, R., (1990). Introduction of a chimeric chalcone

synthase gene into petunia results in reversible co-suppression of homologous genes in

trans. Plant Cell, 2(4), 279–289. https://doi.org/10.1105/tpc.2.4.279.

Naqvi, A. R., Sarwat, M., Hasan, S., & Roychodhury, N., (2012). Biogenesis, functions and

fate of plant microRNAs. Journal of Cellular Physiology, 227(9), 3163–3168. https://doi.

org/ 10.1002/jcp.24052.

Noman, A., & Aqeel, M., (2017). miRNA-based heavy metal homeostasis and plant growth.

Environmental Science and Pollution Research, 24(11), 10068–10082. doi: 10.1007/

s11356-017-8593-5.

Nosaka, M., Itoh, J. I., Nagato, Y., Ono, A., Ishiwata, A., & Sato, Y., (2012). Role of

transposon-derived small RNAs in the interplay between genomes and parasitic DNA in

rice. PLoS Genet., 8(9), e1002953. https://doi.org/10.1371/journal.pgen.1002953.

Ossowski, S., Schwab, R., & Weigel, D., (2008). Gene silencing in plants using artificial

microRNAs and other small RNAs. The Plant Journal, 53(4), 674–690. https://doi.

org/10.1111/j.1365-313x.2007.03328.x.

Pandey, R., Joshi, G., Bhardwaj, A. R., Agarwal, M., & Katiyar-Agarwal, S., (2014). A

comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in

Triticum aestivum. PLoS One, 9(4), e95800. https://doi.org/10.1371/journal.pone.0095800.

Park, J. H., & Shin, C., (2014). MicroRNA-directed cleavage of targets: Mechanism

and experimental approaches. BMB Reports, 47(8), 417. https://doi.org/10.5483/

bmbrep.2014.47.8.109.

Park, Y. K., Park, S. M., Choi, Y. C., Lee, D., Won, M., & Kim, Y. J., (2008). AsiDesigner:

Exon-based siRNA design server considering alternative splicing. Nucleic Acids Research,

36(suppl_2), W97–W103. https://doi.org/10.1093/nar/gkn280.

Parmar, S., Gharat, S. A., Tagirasa, R., Chandra, T., Behera, L., Dash, S. K., & Shaw, B.

P., (2020). Identification and expression analysis of miRNAs and elucidation of their

role in salt tolerance in rice varieties susceptible and tolerant to salinity. PloS One, 15(4),

e0230958. https://doi.org/ 10.1371/journal.pone.0230958.

Parmer, S., & Shaw, B., (2018). Salt stress tolerance in plants: The role of miRNAs. Adv

Plants Agric. Res., 8(6), 411–415. https://doi.org/10.15406/apar.2018.08.00360.

Paul, S., Kundu, A., & Pal, A., (2011). Identification and validation of conserved microRNAs

along with their differential expression in roots of Vigna unguiculata grown under salt

stress. Plant Cell, Tissue and Organ Culture (PCTOC), 105(2), 233–242. https://doi.

org/10.1007/s11240-010-9857-7.

Pegler, J. L., Oultram, J. M., Grof, C. P., & Eamens, A. L., (2019). Profiling the abiotic

stress responsive microRNA landscape of Arabidopsis thaliana. Plants, 8(3), 58. https://

doi. org/10.3390/plants 8030058.

Peters, L., & Meister, G., (2007). Argonaute proteins: Mediators of RNA silencing. Molecular

Cell, 26(5), 611–623. https://doi.org/10.1016/j.molcel.2007.05.001.

Phillips, J. R., Dalmay, T., & Bartels, D., (2007). The role of small RNAs in abiotic stress.

FEBS Letters, 581(19), 3592–3597. https://doi.org/10.1016/j.febslet.2007.04.007.

Pradhan, A., Naik, N., & Sahoo, K. K., (2015). RNAi mediated drought and salinity stress

tolerance in plants. American Journal of Plant Sciences, 6(12), 1990. http://dx.doi.org

/10.4236/ajps.2015.612200.